Passa al contingut principal

Independent Research Fellows (Faculty) at the Barcelona Collaboratorium for Theoretical Modelling and Predictive Biology (REF. 2023-022-P04500)

The Barcelona Collaboratorium for Modelling and Predictive Biology is a new space for computational, mathematical and theoretical biology launched as a joint initiative of two leading life science institutes - the Centre for Genomic Regulation (CRG) and EMBL Barcelona. The open plan space is designed to promote collaboration, the sharing of ideas, and synergy across disciplines and scales. Each area of biology has its own unique features, but theoretical concepts from one discipline can provide important fresh insights and new perspectives into another. Our focus is to bring together experts from different disciplines, into the same space, from molecular, cellular and tissue biology, up to epidemiology and ecosystems.

The 21st century has seen a revolution in biology. We can sequence whole genomes cheaply and fast, image the dynamics of gene activity from microscopic bacteria up to the whole human body, and precisely modify the DNA of almost any organism. This is creating vast quantities of molecular data, and giving us the tantalizing hope of being able to control, repair and engineer living systems. 

However, these impressive technical advances have not yet translated into an ability to accurately control, or even to accurately predict, the behavior of most real living systems. Biology is complex, and a remaining revolution is still ahead of us: to make biology predictable and controllable – from the design of new proteins and the repair of human organs, up to the prediction of whole ecosystems. Data-generation is no longer the primary concern – technologies for quantitative data generation continue to improve at break-neck speed, both in quality and quantity. The deeper concern now is a lack of theoretical and computational tools to understand and predict complex biology – across all relevant scales. 

The Collaboratorium will host independent research fellows, postdoctoral and doctoral researchers working with local groups and both short term and extended visits by international leaders in the fields of theoretical biology, artificial intelligence/machine learning, complex systems, physics of life, computer science and engineering.

The role: Independent Research Fellows (Faculty) 

Collaboratorium Fellows are faculty-level appointments suitable for original and ambitious researchers in theoretical modeling, mathematical biology, and predictive biology. We will consider applications from early career researchers (researchers immediately after the PhD or up to about five years of post-doctoral experience) who are seeking to make the transition to establishing themselves as independent scientists. The successful candidate will be employed by CRM and will hold a joint appointment with both CRM and CRG. The appointee will be considered as faculty in both institutions, and will be expected to lead an independent research program with a small research group. 

Applicants may have a background in any relevant discipline (including mathematics, physics, computer science, engineering or biological sciences) with a strong theoretical or quantitative background and should be interested in working in a collaborative and interdisciplinary environment of individual researchers, visitors and small teams. 

Although purely theoretical and computational work is suitable for this position, collaborating with local or international experimental laboratories is encouraged. Fellows can work on biological systems at any scale from individual molecules to networks, cells, tissues, organs and ecosystems. Candidates with expertise in machine learning applied to biological data at any of these scales and/or the development of multiscale methods and models to bridge scales in multicellular systems are particularly encouraged to apply. 

The Independent Fellowship package includes funding for 1 PhD student and research costs. In addition, candidates are expected to apply for external funding over the course of the Fellowship. Suitable space will be provided for a team of maximum 3 researchers. 

In addition to conducting cutting-edge research in modeling and predictive biology, Collaboratorium Fellows are also expected to participate in and organize internal seminars and Collaboratorium activities in collaboration with the partner institutions (CRG, CRM, and EMBL) 

Deadline: Please submit your application by 31/01/2024. 

Més informació

Més posts de Recerca



Entrades populars d'aquest blog

Cursos gratuïts sobre IA a Harvard

Cursos de la Universitat de Harvard des de la plataforma edX Introducción a la ciencia de computación . Introducción a la programación CS50 usando Scratch . Introducción a la inteligencia artificial en CS50 usando Python . Uso de React Native para el desarrollo de aplicaciones móviles . Programación web usando Python y JavaScript. Introducción al desarrollo en el desarrollo de juegos . Introducción al curso CS50 sobre programación con Python . Curso sobre CS50 para entender la tecnología . Introducción a la ciencia de datos con Python . Introducción a la ciencia de computación para empresas. Machine Learning. Inteligencia artificial en las empresas: creación de valor mediante el aprendizaje automático. Més posts de Formació

Oferta pública 27/02/2024

  Ajuntament de la Riba 1 plaça de Secretari interventor Ajuntament de Sabadell 1 plaça de Tècnic mitjà d'enginyeria industrial (esp. electricitat) Ajuntament de Sabadell 2 places de Tècnic mitjà enginyer Ajuntament del Prat de Llobregat - Aigües del Prat, SA 1 plaça de Director gerent Ajuntament d'Olot 1 plaça d'Enginyer tècnic Barcelona Supercomputing Center-Centro Nacional de Supercomputación (BSC-CNS) 1 plaça de Research Engineer - Use of acoustic information in chatbots (RE1) Barcelona Supercomputing Center-Centro Nacional de Supercomputación (BSC-CNS) 1 plaça de Post-doc in Machine Learning for Biomedical Multi-Omic Data Analysis in Precision Medicine (R2) Barcelona Supercomputing Center-Centro Nacional de Supercomputación (BSC-CNS) 1 plaça de Software randomisation compiler - Master Student (R0) Comaigua, SL 1 plaça de Responsable d'Oficina Tècnica Consorci Hospitalari de Vic 1 plaça de Tècnic Biomèdic - Big Data Empresa de Transformación Agraria, SA, SME, MP (TR

Curs d'Analítica de dades i Machine Learning (Online) Eurecat Academy

El curs d’Analítica de dades i Machine Learning ofereix una introducció a les tecnologies i metodologies per a l’extracció d’informació en grans conjunts de dades, tant ja existents com de les recollides en temps d’execució. A més, també aporta la metodologia per millorar els coneixements tècnics en Data Mining. Programa del curs 1. Introducció al Big Data. 2. Instal·lació i configuració de Python i R. 3. Introducció a Python y R. 4. Fonaments d’Estadística enfocada a BigData. 5. Observational Study / Exploratory Analysis: utilització de l’agregació de dades i la mineria de dades per proporcionar informació sobre el passat: 6. Anàlisi de Dades: Utilització de models estadístics i tècniques de pronòstic per comprendre el futur. 7. Machine Learning Comprensió dels principals tipus d’aprenentatge automàtic. Supervised Learning – Aprenentatge Supervisat. Unsupervised Learning – Aprenentatge No Supervisat. Inici: 04/03/2024 Més informació Més posts de Formació