Passa al contingut principal

High-fidelity modelling of hydrogen-fired industrial combustors for steel manufacturing furnaces. per el Barcelona Supercomputing Center

The stringent emission regulations and the EU commitment to achieve net-zero greenhouse gas (GHG) emissions by 2050 (EU Commission, COM (2018) 773) is driving the power generation industry to prioritize the development of low-carbon technologies. To meet the European decarbonization objectives, the energy-intensive industrial sectors must be transformed in terms of low-carbon technology deployment. The metallurgical sector, with a high dependency on fossil fuels, could strongly benefit from clean combustion technologies and the use of cleaner and more sustainable fuels. Hydrogen and hydrogen-enriched fuels have significant potential to enable the transition to a clean, low-carbon energy system. Nonetheless, reducing the emissions to the levels of the EU targets brings new challenges to the industrial sector and to the metallurgical sector, which is responsible for a large portion of the pollutant emissions produced in the industrial sector and has a high dependency on fossil fuel supply. Today, the industrial sector requires more efficient burners, which implies not only a reduction in fuel consumption, but also in carbon emissions, CO2, and pollutant emissions, particularly NOx. While the first goal can be achieved by the use of hydrogen as a fuel, for the second one there exist a variety of approaches, being one of them oxy-fuel combustion. Despite its advantages, oxy-fuel combustion poses a series of challenges that require a systematic analysis. Indeed, the greater temperatures reached reinforce the importance of thermal radiation on these flames and, therefore, its modelling is addressed in this context as a major goal.

Within this context, the candidate will develop a research activity which will comprise the development of a High-Performance Computing (HPC) platform to conduct high-fidelity Computational Fluid Dynamics (CFD) simulations of the furnace. The numerical simulations will be conducted with the multiphysics code Alya from BSC with the aim of obtaining further understanding on the combustion performance and dynamics after hydrogen is blended with natural gas and generate datasets for data analysis. These activities are conducted in the context of an EU project from Horizon Europe and the National Government from Spain in collaboration with a metallurgical company.

The applicant will join the Propulsion Technologies Group (PTG), a research group from the Computer Applications in Science and Engineering (CASE) Department at the Barcelona Supercomputing Center. As part of the PTG, the applicant will form part of a multidisciplinary team of researchers with a strong background on Computational Fluid Dynamics (CFD), combustion and multiphase flows. The PTG is actively involved in several European research-oriented and industrial projects for which results are disseminated in highly ranked scientific journals and conferences.

The applicant is expected to work on the execution of these simulations and development of reduced-order models based on data-analytics and machine learning using Computational Fluid Dynamics with High-Performance Computing (HPC) techniques.

Key Duties

  • Conducting high-fidelity combustion simulations of hydrogen flames using LES with tabulated chemistry.
  • Characterization of oxy-fuel combustion
  • Interact with the different partners of the projects to carry our collaborative research.
  • Contribute to scientific publications and reporting to different National and EU projects the researcher will be involved in.

Data de tancament: Dimarts, 16 Gener, 2024

Més informació

Més posts de Recerca

Comentaris

Entrades populars d'aquest blog

Cursos gratuïts sobre IA a Harvard

Cursos de la Universitat de Harvard des de la plataforma edX Introducción a la ciencia de computación . Introducción a la programación CS50 usando Scratch . Introducción a la inteligencia artificial en CS50 usando Python . Uso de React Native para el desarrollo de aplicaciones móviles . Programación web usando Python y JavaScript. Introducción al desarrollo en el desarrollo de juegos . Introducción al curso CS50 sobre programación con Python . Curso sobre CS50 para entender la tecnología . Introducción a la ciencia de datos con Python . Introducción a la ciencia de computación para empresas. Machine Learning. Inteligencia artificial en las empresas: creación de valor mediante el aprendizaje automático. Més posts de Formació

Oferta pública 27/02/2024

  Ajuntament de la Riba 1 plaça de Secretari interventor Ajuntament de Sabadell 1 plaça de Tècnic mitjà d'enginyeria industrial (esp. electricitat) Ajuntament de Sabadell 2 places de Tècnic mitjà enginyer Ajuntament del Prat de Llobregat - Aigües del Prat, SA 1 plaça de Director gerent Ajuntament d'Olot 1 plaça d'Enginyer tècnic Barcelona Supercomputing Center-Centro Nacional de Supercomputación (BSC-CNS) 1 plaça de Research Engineer - Use of acoustic information in chatbots (RE1) Barcelona Supercomputing Center-Centro Nacional de Supercomputación (BSC-CNS) 1 plaça de Post-doc in Machine Learning for Biomedical Multi-Omic Data Analysis in Precision Medicine (R2) Barcelona Supercomputing Center-Centro Nacional de Supercomputación (BSC-CNS) 1 plaça de Software randomisation compiler - Master Student (R0) Comaigua, SL 1 plaça de Responsable d'Oficina Tècnica Consorci Hospitalari de Vic 1 plaça de Tècnic Biomèdic - Big Data Empresa de Transformación Agraria, SA, SME, MP (TR

Curs d'Analítica de dades i Machine Learning (Online) Eurecat Academy

El curs d’Analítica de dades i Machine Learning ofereix una introducció a les tecnologies i metodologies per a l’extracció d’informació en grans conjunts de dades, tant ja existents com de les recollides en temps d’execució. A més, també aporta la metodologia per millorar els coneixements tècnics en Data Mining. Programa del curs 1. Introducció al Big Data. 2. Instal·lació i configuració de Python i R. 3. Introducció a Python y R. 4. Fonaments d’Estadística enfocada a BigData. 5. Observational Study / Exploratory Analysis: utilització de l’agregació de dades i la mineria de dades per proporcionar informació sobre el passat: 6. Anàlisi de Dades: Utilització de models estadístics i tècniques de pronòstic per comprendre el futur. 7. Machine Learning Comprensió dels principals tipus d’aprenentatge automàtic. Supervised Learning – Aprenentatge Supervisat. Unsupervised Learning – Aprenentatge No Supervisat. Inici: 04/03/2024 Més informació Més posts de Formació