Passa al contingut principal

PhD Student - High-fidelity thermo-mechanical simulations for Solid Oxide Electrolyzer Cells (R1) per el Barcelona Supercomputing Center

The urgent need for decarbonization has brought about a shift towards hydrogen and hydrogen-enriched fuels as a solution for the future cleaner, and low-carbon energy systems. However, meeting the EU targets for reduced emissions and carbon dependency poses new challenges for energy-intensive industrial processes like steel manufacturing or power generation. Power-to-X (P2X) technologies are being developed to produce "green hydrogen" from renewable electricity, which can then be used to improve these processes and reduce their carbon footprint and dependence on fossil fuels. In fact, given the still low energy density of batteries, green hydrogen is currently the only feasible alternative to decarbonize industries where this parameter is critical, such as as commercial aviation. Hydrogen-based technologies are a crucial component of the energy transition and require digital tools and advanced software to speed up their deployment in the market.

Green hydrogen, which is generated from water and renewable electricity in an electrolyzer, can be stored and distributed for use in power generation or electrochemical systems like fuel cells. Among the most efficient hydrogen production systems, Solid Oxide Electrolizer Cells (SOECs) operating at high temperatures have shown high potential to generate hydrogen at moderate and large scales. These cutting-edge technology involve numerous physical and chemical phenomena occurring at various scales, ranging from thermo-mechanical-fluidic at the cm-scale to electrochemistry at the nanoscale. The multi-physics and multi-scale nature of these devices makes them extremely challenging from a simulation standpoint, but the outputs of the simulations are highly valuable for predicting and designing real-world operating systems.

This Ph.D. opportunity offers a chance to work on predicting the mechanical behavior of SOEC technology with a focus on developing a thermo-mechanical solver and constitutive modeling of the system. The research will involve understanding the thermo-mechanical properties of SOECs and developing a model to accurately predict the thermal stresses under service conditions for the critical cell components. The developed framework will be integrated into Alya, an HPC-multiphysics code, coupling it with the thermo-electro-chemical solver. The successful candidate will work with a team of experienced researchers to further advance the SOECs field and contribute to sustainable energy technologies development. The model developed by the candidate will be verified and validated against the experimental data gathered from the prototype cells provided by the cutting-edge equipment of project partners. The final outcome of this project involves the candidate working on developing infrastructure for generating Digital Twins that use Artificial Intelligence (AI) and physics-based reduced-order models to process data from the full description of the SOEC system. The model developments will be conducted in collaboration with the Universidad de Sevilla, and interactions with the solid mechanics group there are expected.

Key Duties

Implement advanced constitutive material models.

Develop a thermo-mechanical solver.

Coupling of the thermo-electro-chemical with a thermo-mechanical model.

Predict the thermal stresses of the critical cell components.

Interact with the different partners of the projects to carry our collaborative research.

Contribute to scientific publications and reporting to different National and EU projects the researcher will be involved in.

Data de tancament: Dissabte, 16 Desembre, 2023

Més informació

Més posts de Recerca


Entrades populars d'aquest blog

Cursos gratuïts sobre IA a Harvard

Cursos de la Universitat de Harvard des de la plataforma edX Introducción a la ciencia de computación . Introducción a la programación CS50 usando Scratch . Introducción a la inteligencia artificial en CS50 usando Python . Uso de React Native para el desarrollo de aplicaciones móviles . Programación web usando Python y JavaScript. Introducción al desarrollo en el desarrollo de juegos . Introducción al curso CS50 sobre programación con Python . Curso sobre CS50 para entender la tecnología . Introducción a la ciencia de datos con Python . Introducción a la ciencia de computación para empresas. Machine Learning. Inteligencia artificial en las empresas: creación de valor mediante el aprendizaje automático. Més posts de Formació

Oferta pública 27/02/2024

  Ajuntament de la Riba 1 plaça de Secretari interventor Ajuntament de Sabadell 1 plaça de Tècnic mitjà d'enginyeria industrial (esp. electricitat) Ajuntament de Sabadell 2 places de Tècnic mitjà enginyer Ajuntament del Prat de Llobregat - Aigües del Prat, SA 1 plaça de Director gerent Ajuntament d'Olot 1 plaça d'Enginyer tècnic Barcelona Supercomputing Center-Centro Nacional de Supercomputación (BSC-CNS) 1 plaça de Research Engineer - Use of acoustic information in chatbots (RE1) Barcelona Supercomputing Center-Centro Nacional de Supercomputación (BSC-CNS) 1 plaça de Post-doc in Machine Learning for Biomedical Multi-Omic Data Analysis in Precision Medicine (R2) Barcelona Supercomputing Center-Centro Nacional de Supercomputación (BSC-CNS) 1 plaça de Software randomisation compiler - Master Student (R0) Comaigua, SL 1 plaça de Responsable d'Oficina Tècnica Consorci Hospitalari de Vic 1 plaça de Tècnic Biomèdic - Big Data Empresa de Transformación Agraria, SA, SME, MP (TR

Curs d'Analítica de dades i Machine Learning (Online) Eurecat Academy

El curs d’Analítica de dades i Machine Learning ofereix una introducció a les tecnologies i metodologies per a l’extracció d’informació en grans conjunts de dades, tant ja existents com de les recollides en temps d’execució. A més, també aporta la metodologia per millorar els coneixements tècnics en Data Mining. Programa del curs 1. Introducció al Big Data. 2. Instal·lació i configuració de Python i R. 3. Introducció a Python y R. 4. Fonaments d’Estadística enfocada a BigData. 5. Observational Study / Exploratory Analysis: utilització de l’agregació de dades i la mineria de dades per proporcionar informació sobre el passat: 6. Anàlisi de Dades: Utilització de models estadístics i tècniques de pronòstic per comprendre el futur. 7. Machine Learning Comprensió dels principals tipus d’aprenentatge automàtic. Supervised Learning – Aprenentatge Supervisat. Unsupervised Learning – Aprenentatge No Supervisat. Inici: 04/03/2024 Més informació Més posts de Formació